Situation

  • Phase III multi-center, double-blind, randomized, placebo-controlled study
  • 150 patients
  • 80+ sites across 25 countries

Challenge

The sponsor was concerned that the following factors would cause a very high level of drug wastage:

  • Large number of sites
  • Clinical supplies team did not have the capacity to closely monitor sites

Solution:

Calyx supply chain experts recommended Calyx IRT’s automated supply strategy management to:

  • Ensure each site is appropriately stocked by changing the IMP supply levels to match current recruitment rate
  • Take the burden off the clinical supplies manager
  • Minimize drug wastage
Identify which sites are active
Assess the site based on defined parameters
Switch the supply strategy, if needed
Generate shipment specific to the site’s needs

What is a supply strategy?

Supply strategies determine what stock is sent to a site; they combine site needs for both:

Buffer:

  • for randomization & for unplanned needs, for example, replacing damaged stock
  • quantities based on assumptions made at the start of the trial

Prediction:

  • typically, for subjects from randomization onwards
  • quantities based on subject treatment group, dosing regimen & visit schedule

Typical IRT approach

When the site is first activated, a strategy is selected based on the expected recruitment rate; this can be changed by the clinical supply manager via the IRT whenever the actual recruitment rate differs, so requires active monitoring

Advanced IRT approach

Automated supply strategy management differs as a site’s strategy is automatically changed to align with its actual recruitment rate.

The automated supply strategy management process:

For this study, Calyx IRT ensured that all subjects currently in screening could be randomized (and for this design received 1 kit of active or placebo).

The stock in the initial shipment was based on a dynamic count of subjects actively in screening at the site

The stock in the resupply shipments was based on a dynamic count of subjects actively in screening at the site

The quantities to ship per strategy were defined based on assumptions at the start of the trial with the support of the study’s dedicated Calyx IRT randomization and trial supply expert.  Clinical Supply Managers were able to amend those quantities through Calyx IRT self-service tools, once real-world patient and site data was available.

The Calyx IRT design also included:

  • The option for the clinical supplies team to easily override the automated supply strategy switch via our inventory management web system
  • Country-specific opt-outs for the automated process
  • Specific supply strategies for locations with a long lead time for shipments

Result:

By using Calyx IRT to automatically optimize the supply strategy for the site’s current recruitment situation, the sponsor was able to:

  • Relieve the clinical supply manager’s burden of closely monitoring each site’s supply levels against patient recruitment
  • Avoid failed patient visits due to insufficient medication
  • Ensure that each site is on the optimum supply strategy for their current recruitment rate
  • Keep drug wastage to a minimum

More on automated supply strategy management

Automated Supply Strategy Management is one of Calyx IRT’s advanced trial supply management options; it’s a flexible approach that can be tailored to specific protocol requirements and supply criteria.

The approach can be helpful for any type of study but is particularly useful at reducing the burden on the clinical supply manager when there are many sites.

Trials which benefit most

Large trials with many sites

Trials with a combination of local and central sourcing of IMP

  • The greater number of IMP types, the larger the possible combinations for resupply strategies
  • Automated switching would be used to assign a strategy based on the source settings for a site

Comparator trials where the comparator is known to be different based on patient characteristics

  • Automated switching could be used to monitor the level of comparator medication based on the number of patients with the required characteristic

Calyx RTSM expertise

Our dedicated IRT randomization and trial supply experts are here to help with any questions related to advanced trial supply management.

If you are interested in using automated supply strategy management, Calyx RTSM experts can assess the suitability of the method for your design considering:

  • Number of sites
  • Recruitment rates
  • Supply of future visits
  • Medication costs
  • Medication availability

Situation

  • Phase III study evaluating the efficacy of 2 different doses of active drug compared with placebo
  • 500 patients
  • 80+ sites participating across six countries
  • Site stratification

Challenge

  • IMP was very expensive, so ensuring patient supply while limiting overage was critical
  • Storage of medication was limited for many sites

Solution:

  • Calyx RTSM experts recommended “randomization prediction,” one of our advanced trial supply management options; this sends only the exact medication a site will use for upcoming patient randomization
  • Traditional IRT solutions base site stock levels on the expected number of randomizations and the amount of medication used for each treatment group
  • With randomization prediction, Calyx IRT sends medication to each site based on upcoming treatment group assignments known from the randomization list
  • Calyx RTSM experts worked with the sponsor to understand the expected site recruitment rates and recommended a range of supply strategies including low, medium, and high recruiter

We determined how many randomization list records’ worth of medication would be covered per supply strategy

Result

  • Randomization prediction ensured a reduction in overage by removing the buffer
  • The stock required to be shipped to the site was reduced, as shipments contained specific medication for randomization assignments
  • Patients had the right drug at the right time

Randomization Prediction

Randomization prediction is one of Calyx IRT’s advanced trial supply management options; a flexible approach that can be tailored to specific protocol requirements & supply criteria.

If your study stratifies by site, Calyx IRT can send IMP to each site specific to upcoming treatment group assignments; this ensures overage is reduced.

Additional Features

— Can also cover medication needs for the next visit; beneficial if the next dosing visit is close to randomization

— Can be used with another stratification factor, in addition to site

— Does not require sites to have all types of medication for a randomization to proceed

— Can be combined with standard buffer & prediction strategies

  • Covering subsequent visits
  • Including buffer stock in case of IMP damage

Calyx RTSM Expertise

Our dedicated IRT randomization & trial supply experts are here to help with any questions related to advanced trial supply management.

If you are interested in using randomization prediction, Calyx RTSM experts can assess the suitability of the method for your design considering:

  • Recruitment rates
  • Supply of future visits
  • Blinding considerations
  • Randomization and statistical considerations

Situation

A leading biotechnology company transforming their business across multiple therapeutic areas came to Calyx for help in designing an IRT system to overcome numerous obstacles:

  • Some compounds were owned jointly with other companies, requiring more flexibility and adaptability in their IRT designs
  • Delayed protocol feedback from regulatory agencies increased pressure on study timelines
  • Rapidly expanding pipeline resulted in increased IRT deployment demand in support of more trials
  • Already strained resources were expected to roll out studies faster and in parallel to keep up with the portfolio growth
  • Other system-wide impact items included protocol amendments, regulatory reporting, and response capability
  • Increased demand for more trials taxed their internal resourcing and capacity

Challenges

Calyx was asked to come up with a solution that would alleviate the RTSM-related pressures on the study team, freeing them to focus on other critical development needs. The challenges put forward for the RTSM technology were:

  • Create repeatability in the design and delivery of the Interactive Response Technology (IRT)
  • Streamline processes such as communication channels and study requirements documentation
  • Create efficiencies for sites and in the delivery of each study’s IRT implementation
  • Quickly implement protocol amendments to address the lag time of regulatory response

The expectation was that when these key areas were addressed, the biotechnology company would have the agility and flexibility needed to conduct their trials with confidence, ensuring continued support and growth of their portfolio. Naturally, this had to be accomplished without introducing risk or loss of data quality and accuracy.

Additional expected outcomes included the ability to:

  • Ensure true alignment between IRT delivery and study teams
  • Increase access and visibility into patient and supply chain data
  • Leverage automation as part of the solution
  • Increase efficiency in end-to-end IRT delivery

Reduce if not eliminate:

  • Time needed to gather, document, and review requirements
  • Need for custom programming
  • Time required for User Acceptance Testing

Solution

The IRT system Calyx implemented was a business solution, encompassing both technology and service and ensuring that the people, technology, and processes were agreed upon by both organizations. The technology part of the solution included the development of IRT standards as well as the supporting business processes. It also required some processes to be adapted or new ones created.

Standards

Developing IRT standards was a collaborative process, which ensured the standards covered the three typical levels of functionalities in the IRT system:

  • Core standards
  • Sponsor standards
  • Protocol requirements

Typical functionalities of Calyx’s core IRT standards address such items as randomization algorithms, inventory management functionalities and algorithms, drug accountability workflows, and integrations. As a result, Calyx standards come with inherent system flexibility and adaptability to align each IRT deployment to the study protocol without the need for custom programming.

Sponsor-level standards encompassed their commonly used functionalities or settings, such as countries, depots, and inventory management preferences, all linked to their existing processes.

Process-related items included how project communication or standards adaptation would be handled, the communication channel, forms, templates, and other standard documentation such as project agreements, unblinding addendums, and project requirements form. They also included site-level processes identifying how site users were to interact with and utilize the system. This drove some of the biotechnology company’s specific user access requirements and standards development through reporting accessibility and useability.

Partnerships

As part of the solution, both organizations formed a partnership which included aligning the Calyx IRT delivery team with the client’s study team by therapeutic area. Portfolio directors, solution designers, engineers, validation, and support personnel, along with commercial business development and solution consultants were aligned as part of the partnership.

Portfolio and business development directors attended monthly governance meetings where the pipeline was reviewed, and high-level planning and agreements were made from a pipeline support perspective. Additionally, discussions included any items that may have had an impact on the solution such as standards enhancements or changes required to align the standards to business changes or to simply drive new requirements.

Benefits

  • Increased efficiency in design, delivery, and communication, while reducing risk and providing the visibility and traceability requested
  • The sponsor engages with the same IRT delivery teams across multiple trials, building trust and mutual understanding
  • Increased site and staff efficiencies provide the ability to support sustained growth
  • Increased data quality and consistency through standards and automation

Results

  • Sponsor realized the value and benefits of program management
  • Therapeutic area team alignment means studies are delivered by same team over and over
  • Ability to adapt to un-expected life altering events: COVID Program successfully supported with 10 study go-lives in record setting deployment timelines
  • Demonstration of how program management approach combined with client standards and processes through a true partnership increases efficiencies and sets all up for future successes

One of the truly measurable results of the combined standards and partnership solution is the enhanced efficiency and adaptability the biotechnology company experienced while responding to the COVID-19 pandemic. Based on a solid partnership between the therapeutically aligned Calyx IRT team and the COVID-19 study team, the IRT system was delivered within six days, freeing the sponsor’s subject matter experts to focus their efforts on solving issues linked to the effect of COVID-19 on other ongoing trials.

The biotechnology company was granted emergency authorization of its compound and was able to make one of the first COVID-19 treatments available to patients and first responders. Since the pandemic started, the biotechnology company has deployed ten COVID-19 studies of potential COVID-19 treatments, all initiated within similar expedited timelines.

The sponsor knew exactly what could be achieved with this very important program. Thanks to a strong partnership built over the years, they knew they could trust Calyx to deploy their program of COVID-19 studies accurately and in record time.

Key Highlights

  • Ability to support any type of randomization
  • Statistical designers with average 7+ years’ experience in IRT and 250+ adaptive trial designs delivered
  • Secure data blinding, resulting in safe navigation through Calyx IRT and safe communication with our helpdesk
  • As little as 4 weeks from requirements approval to UAT
  • Integrations with eClinical suites (EDC, ePRO, central labs, supply management, etc.); Calyx IRT successfully exchanges more than 10,000 files with other systems daily
  • IRT-dedicated helpdesk, specialized in managing the challenges of patient and inventory management for your sites and trial teams
  • IRT self-service tools allow you to quickly adapt to varying site recruitment levels, change/add supply strategies, and activate new countries and depots

Situation

A sponsor had developed a protocol that required patients to taper their dose of prednisone over the course of the trial. Patients could enter the trial on their current prednisone dose, resulting in various prednisone tapering schedules across all patients, spanning several months.

The protocol was designed to include an open label part during which patients’ prednisone dose tapering was initiated. Patients then entered a double-blind part where they were randomized between active and placebo.

Due to the trial design and the prednisone tapering, the trial supplies included 50 different pack types in total. Recruitment was planned to take place in 27 different countries, across 120 sites.

Challenge

  • The dispensing plan was very complex and needed to be adapted to each patient’s starting prednisone dose
  • Some of the medication was used as both open-label and double-blind kits
  • The sponsor was concerned about the amount of medication that would need to be packaged, considering the large number of countries and pack types
  • There was a risk that sites would have too many kits to store compared to their refrigerated storage capacity
  • The sponsor was very concerned with the potentially large quantity of medication sent to sites that may not be used, resulting in high waste volume across the trial

Solution

  • Calyx built an IRT solution that guaranteed the minimum number of kits would be sent to sites while ensuring sites were able to recruit new patients on any starting prednisone dose.
  • We defined a dispensing schedule that could automatically adapt to the patient’s initial prednisone dose
  • Calyx supply chain optimization experts recommended using buffer stock strategies for new patients only to reduce drug wastage at site
  • Calyx IRT inventory management was set up to predict for pack types that the patients would require based on their visit number, tapering level, and the part of the study they were in (open-label vs double-blind)
  • We applied fractional prediction (also known as partial prediction) to cover the patient’s needs at each visit as well as any need for a replacement kit
  • We worked together with the sponsor to define the likelihood of a replacement kit being required and agreed to predict one replacement kit for every 20 patients
  • We also applied prediction capping, to reduce the risk of overstocking sites compared to their storage capacity

Result

  • By using advanced inventory management settings in Calyx IRT, we reduced the buffer stock at sites by 60%
  • Our prediction method was adapted to each patient’s tapering schedule
  • The sponsor avoided failed visits by leveraging fractional prediction for kit replacement
  • We helped reduce drug wastage at the site level to the minimum based on the protocol constraints

Contact [email protected] to learn how you can benefit from Calyx’s expertise in designing effective IRT solutions.

How does IRT help reduce drug wastage?

Interactive response technology (IRT) is a randomization and trial supply management (RTSM) tool that is often under-used when it comes to waste reduction. But when planned for early  during medication calculation and packaging planning – can be very effective at reducing drug waste and overall trial costs. 

Here we review eight approaches to drug waste reduction that can be implemented through a well-designed IRT system. Since the scenarios that determine the optimal approach will vary from trial to trial, it’s recommended that clinical trial sponsors and CROs work closely with their IRT provider to leverage their expertise and take full advantage of the system’s benefits. 

8 IRT Approaches That Help Reduce Drug Wastage

1) Prediction

The traditional way of supplying sites with medication is based on a buffer strategy, conventionally configured by trigger and resupply levels that can be adjusted per site. The IRT system generates a shipment request each time a resupply trigger is met for any of the pack types at site. It is common to replenish all pack types at the point a shipment request is raised to reduce overall shipment costs and to better maintain the blind within a shipment. The resupply level is a function of the recruitment rate, desired resupply frequency, site storage capacity, and study overage, and should be sufficient  to supply the anticipated number of unexpected events requiring medication until the next shipment should be raised.

Once a subject is randomized into the trial, he or she may require additional medication dispensations, which are usually supplied at further scheduled visits. As this schedule is known by the IRT, the system can calculate which packs are required by the subject and when, which means the needs of a continuing subject can be predicted.

The IRT system looks ahead over a defined time horizon (check range) and determines if the current stock on-site is sufficient to supply any visits in this window. If it is not, a new shipment of medication must be sent to supply the unfilled requirements. To reduce the number of shipments to sites, the system looks ahead over a longer time horizon (restock range) to decide if there are any additional scheduled visits for returning subjects that can be supplied at the same time. The restock range is determined by desired resupply frequency, site storage, and study overage, alongside other factors such as expected withdrawal rate.

Although these methods of resupplying sites significantly reduce the amount of wastage compared with the traditional system of supplying subject-numbered packs in a single shipment, there are times when these methods lack the sophistication and adaptability needed for more complex scenarios.

2) Fractional-prediction algorithm

In conventional dose-finding studies, where the sponsor investigates several doses of the same treatment, reducing drug wastage becomes more challenging.

Without an IRT system, the sponsor may need to maintain all dosing options within the protocol for all patients, subsequently leading to significant wastage, particularly if there are many doses. Although a prediction algorithm in IRT will provide significant savings, it may not sufficiently cover the potential for intra-patient dose titrations which may result in the need to maintain a higher stock of medication at each site to cover for that possibility.

Consider an example

Imagine there are four doses of an active compound (and matching placebo doses) and any subject can titrate one dose level at each visit. With a simple buffer strategy, the IRT system would need to keep a pack of each dose level for each treatment on site for every patient who could expect to titrate (based on the recruitment rate).

A more efficient option may be to predict all possible doses that each patient may need for each visit (e.g. for a subject on dose level 2 at the previous visit, the system could predict one of each of dose levels 1, 2, and 3 of the relevant treatment groups).

This method, while minimizing the irrelevant treatment types kept on site, still means that three packs are being sent to the investigative site when only one is expected to be used.

There is a type of predictive algorithm that means this potential wastage can further be reduced. Based on the approximate percentage titration rates, the IRT system can predict a fraction of a pack relative to that expectation. For example, if only 20% of patients on dose level 2 are expected to down-titrate to dose level 1, one fifth of a pack can be predicted for each patient currently on dose level 2.

When the needs are assessed by the IRT system, the fractions (for each of the pack types) are added and rounded up to the nearest whole. In our example, for every five subjects on dose level 2 of the same treatment, one pack of dose level 1 will be sent to the site.

CALYX-21-DrugWasteChart

With this approach, the fraction that is predicted is an important variable: setting the fraction too high can increase drug wastage, while setting it too low could result in dispensing failures. By using drug demand simulation, the fraction can be optimized by ensuring the risk of failures is low while keeping the minimum amount of medication at site.

3) Forcing

Forcing as part of trial design

Forcing is usually used as a method to avoid randomization failure due to unplanned lack of medication at site. There are occasions where forcing in IRT is more intentionally incorporated into the design to reduce drug wastage.

Forcing at site using a double randomization.

This method is suitable in trials where there are many treatments, scarce supplies and relatively low recruitment rates. In such situations, sending a full set of treatment supplies represents a substantial amount of wastage.

To reduce wastage, two separate randomization lists are employed. A first randomization list is prepared using the smallest block size, which will be the sum of the allocation ratios. For example, a block size of seven will be used for a trial of seven treatments with an equal allocation ratio. As sites are activated in IRT, they are sent supplies corresponding to a fraction of the block size. In our example, the first site activated may be sent treatments corresponding to the first three entries on the list. The second site activated would be sent the next three entries on the randomization list and so on. This means that a site could be sent two packs of the same treatment drawn from separate blocks.

Where that first randomization list is used to determine which treatments are shipped to sites, a second randomization list is used for the actual patient randomization. That list uses forcing to allocate the patient the next available randomization number corresponding to a treatment that is available at site. Randomization numbers corresponding to non-available treatments are skipped but are available for subsequent patients. As patients are recruited at a site, buffer stock resupplies are initiated using the first randomization list and prediction is used for future patient visits.

By forcing allocation from a balanced list, this technique will result in obtaining the best overall study treatment group balance in the face of limited supplies and a minimal wastage of medication. It is worth noting that this method is not recommended by ICH E9 Guidance. Arguably though, the protection against predictability and selection bias is increased by this method as, even if investigators know the block size and past treatment allocations, they cannot predict the medication for the next patient to be randomized.

4) Automated supply strategy management

Conventional stock management based on expected recruitment rates is limited because it requires active monitoring and action from the clinical supplies team to adapt to actual site-level recruitment.

Although this a valid solution for relatively small studies, it is not relevant to expect continuous close monitoring of all sites’ recruitment rate on a large global study.

An IRT system can help with adapting the stock needs based on usage rates, which is directly correlated to actual recruitment rate.

The stock at site is still categorized by low, medium and high recruitment, but the inventory management algorithm embedded in the IRT monitors the number of patients actively on-going treatment at each site and translates it into an amount of medication required over a pre-defined amount of time.

Advanced IRT systems include the ability to work on average usage as well as highest expected values, to increase the accuracy of the supply management. Should the number of active patients at site increase or decrease, the IRT system will automatically adapt the needs at site, resulting in medication stock being automatically managed.

Such strategies can also be automatically adapted to recruitment phases if medication requirements per phase vary. Clinical supplies managers will want to reduce the buffer stock at site to the minimum when all patients have been recruited for example, which can be automatically done by the IRT, saving the need to closely monitor recruitment phases.

Should the number of active patients at site increase or decrease, the IRT system will automatically adapt the needs at site, resulting in medication stock being automatically managed. 

5) Randomization prediction

Buffer stock defined in terms of trigger and resupply or usage rates are determined in terms of the number of packs that may be required over a specified period, based on an expected recruitment rate and the likely treatment allocations. Supplying medication in this way will inevitably lead to wastage as the number of packs that need to be maintained to randomize a set number of patients will always exceed their actual needs.

In a study with three treatment groups where each group receives a different medication type, to enable the randomization of two patients within a short period, two packs of each medication type must be kept on-site.

In clinical trials where the randomization code is stratified at a site level, there is a method of predicting the buffer needed by using a strategy known as randomization prediction.

The medication needs of a site are determined by the randomization schedule; by looking forward in the schedule, the IRT system forecasts future treatment allocations. Supply orders are generated for sites when the inventory levels fall below or equal to that required to randomize the next X patients to the treatments listed in the randomization schedule, where X is determined by the highest expected recruitment in the check range.

The resupply amounts are similarly determined by the randomization schedule, and shipments will contain enough medication to enable the site to randomize the next Y patients. Similar to normal buffer, Y is determined by the average anticipated recruitment rate in the restock range.

Using normal buffer, in the example above six medication packs would need to be maintained to randomize two subjects; if the randomization scheme was stratified by site and the method of randomization prediction used to maintain buffer stock for randomizations, only two packs would need to be kept onsite to enable randomization of the two patients.

 

6) Blinded group ordering

In many studies it is often the case that recruitment is slow, or very few subjects are expected to be recruited at each site. In these situations where the trial design is double blind, it is very likely that a shipment would contain medication for a single patient and require that a random pack is added to the shipment so that it remains blinded. This additional pack may result in a relatively large amount of wastage when considering it across a full study, particularly where there are several treatment groups or packaging types.

An alternative method of supplying buffer medication, known as blinded group ordering, can be used in this instance to reduce this wastage.

The principle behind blinded group ordering is that the initial supply to site contains the random blinding medication, rather than having to add it to each consignment. It is like a regular buffer strategy; however, the blind group ordering strategy also considers maintaining a total buffer based on an overall quantity.

For example, consider a study with two pack types, active and placebo: the blind group ordering strategy could be set to maintain one pack of active, one pack of placebo, and three packs overall. The third pack would be randomly selected (i.e. either active or placebo). Let’s assume the current stock at a site is 1 × A and 2 × P (where the second placebo is the random pack).

When the next patient is randomized, one of the following scenarios could occur:

  • If the patient is randomized to active, a single pack shipment would be raised containing one pack of active (as there would be no active packs left at the site).
  • If the patient is randomized to placebo, a single pack shipment would be raised containing either a pack of active or a pack of placebo (as there would still be a pack of placebo remaining at the site, the IRT system would replace the random pack).

Using such a method means that single pack shipments are not partially unblinding as the investigator does not know whether the pack in the shipment is replacing the pack they have just dispensed or whether it is a random pack. This can therefore reduce the amount of drug wastage that would otherwise result from adding a significant number of packs to blind each shipment.

7) Pack substitution (for open label studies vs double-blind)

Pack substitution in a clinical trial is usually used when a medication dispensation plan allows for multiple dosing formulations of pack combinations to be used to constitute the same overall dose. For example, a 100mg dose may be made up from 4 x 25mg tablets, 2 x 50mg or 1 x 100 mg.  The decision about how to provide this dose will be made to optimize multiple different objectives, which could relate to frequency of use by the patient, ease of use for the patient, availability, or a separate clinical consideration.

In a situation where the formulation of a drug is changed during a trial, there is a high risk that switching from a formulation to the other results in a lot of wastage. If the existing packs are replaced before they are fully used, all remaining packs will be wasted. It could result in waste at both site and depot level.

Pack substitution is a good solution to reduce wastage in such a situation. The switch from the old formulation to the new formulation is done on a site needs basis, with the IRT shipping the old formulation to sites as a priority and only shipping the new formulation to sites once the depot has run out of the old formulation.

From a medication dispensing point of view, the IRT system also selects the old formulation as a priority and only starts dispensing the new formulation when there is not enough of the old one for a full dispensing.

It is crucial to plan pack substitution well in a scenario like this, as the expiry date of the new formulation needs to be long enough to account for the relatively slow replacement of the old formulation. Sponsors will also want to share this process with depots and sites, so they are prepared for the new formulation replacing the old only when all the old formulation has been used.

8) Medication Pooling

A good way to reduce drug wastage is to look at harmonizing the use of medication across a program or suite of studies, which is referred to as medication pooling. Sponsors should not only achieve a more efficient usage of medication, they can also reduce study-specific supply management oversight. A well-designed IRT solution will be a critical tool to manage medication pooling correctly and help realize costs efficiencies.

Medication pooling in IRT is not new, but many study teams are still unclear about what pooling can and cannot do, and how the regulators will react to its use. Medication pooling will not apply to all programs, as there is a need to have enough overlap in same pack type requirements across protocols for it to be beneficial. Sponsors also need to consider the impact on labelling and should refer to regulations in force across all countries included in each trial, to make sure they follow the right recommendations. Having multiple labels on packs can become confusing to depots and sites, specific labelling solutions are likely to be required to reduce both confusion and risk of error.

Let’s define medication pooling

Pooling is possible when more than one protocols operating at the same depot and/or clinical sites uses the same medication. Pooling allows medication supplies to be shared across multiple trials, hence medication for each protocol is indistinguishable in content, count, and in some cases labelling.

It is common to consider medication pooling from a medication wastage reduction point of view only, but it is also an effective solution to address availability (scarcity) concerns or other restrictions that affect the supply of medication.

When considering sharing medication across trials, medication pooling can be applied at depot level or at site level; we will review both options in this document.

Depot vs site level pooling

Depot and site level pooling have different supply chain and IRT set up considerations. The level where the pooling takes place will impact on packs labelling, depot supply management, as well as site supply management. Both levels also represent different potential savings, site pooling offering the highest medication savings.

In simple terms, depot medication pooling consists in managing medication across trials at depot but having protocol-specific medication at site (even if the pack types are identical). Site medication pooling on the other hand results in managing medication across trials both at depot and site levels. The latter solution is always felt to be the best approach, however determining the size of the one pooled stock for all events in the group of studies could be complex.

Site level pooling

Although not strictly qualified as site level medication pooling, a simple way to reduce medication wastage is to add an extension protocol to the IRT designed for the existing protocol. This is common practice within the industry, and it allows to use packs across both protocols without much impact to the IRT design. This approach is limited to the combination of two protocols though.

Site level pooling associated with a program of studies allows a site to have one supply of stock for all the protocols it is recruiting into within the ‘pooling group’ of protocols.  The site has one supply scheme across all the protocols, rather than a separate supply scheme per protocol.  In an open label trial, it helps avoid any compliance issues where sites may run out of stock for one protocol, but have the needed medication available for another protocol.

What is the impact on site supply strategies?

Depot level pooling offers the flexibility to include both pooled pack types and medication that is not pooled, where a certain pack type is assigned to a specific protocol for example.

For site level pooling in the other hand, protocol specific packs should be restricted to medication solely used within a particular protocol for a purpose unique to that design. Sites will have one supply of medication, shipments will be raised without distinction between protocols.

Medication pooling can be used in combination with predictive supply for upcoming patient visits within a given site for all the studies in the program represented at the site.  Additional buffer stock should be held to cover new patients and unscheduled resupplies. It is very important to assess needs across all protocols to determine a buffer stock that can meet the needs of the trials currently active within the site. Sponsors will also need to consider how buffer stock should be impacted if a new protocol is added to the pooling, and how to implement the right level of flexibility in supply strategies. The definition of supply strategies becomes more complex if protocols include both pooled medication and protocol-specific pack types.

REFERENCES

Sarah Waters
Calyx, Nottingham, UK

Iain Dowlman
Calyx, Nottingham, UK

Kevin Drake
Calyx, Nottingham, UK

Lee Gamble
Calyx, Nottingham, UK

Martin Lang
Calyx, Nottingham, UK

Damian McEntegart
Calyx, Nottingham, UK

Damian McEntegart
Calyx, Nottingham, UK

Proven. Adaptable. Trusted.

There’s nothing more important than keeping clinical trial patients safe. Which means ensuring they receive the right medication on time, every time.

That’s why, since 1993, the world’s leading biopharmaceutical companies and CROs have repeatedly turned to Calyx to meet their varied randomization and trial supply management RTSM) needs.

With Calyx IRT, you gain confidence in RTSM through an extremely robust system, built on decades of experience, and delivered by the most experienced project teams in the industry.

KEY FEATURES
  • Advanced randomization management, suitable from simple blocked and stratified randomization designs to more complex adaptive trial designs
  • Flexible and robust medication management algorithms, including automated workflows and self-service tools
  • Intuitive site functionalities configured to match protocol requirements and increase protocol compliance
  • Reporting adapted to the needs of each user type
KEY BENEFITS
  • Reduce the risk of unblinding, randomization imbalance, or mis-dispensing by working with the most experienced teams in IRT
  • Meet key milestones – Calyx teams consistently deliver excellent quality on time
  • Reduce effort during IRT system setup thanks to the expertise of Calyx staff who make your decision-making process simpler
  • Leverage the highly integrated IRT solution to increase data quality, reduce effort in data reconciliation, and reduce the risk of unblinding
  • Decrease vendor oversight by leveraging Calyx’s excellence in project management
  • Increase your confidence in supply chain settings by engaging with Calyx supply chain experts
  • Reduce the cost of drug management through advanced IRT settings

Optimized through the delivery of 4,500+ trials to date, Calyx IRT is an RTSM solution you can trust. Every time.

Reduce trial risks, ensure compliance

With Calyx’s robust functionalities and proven processes, you gain confidence in your ability to control the risks of:

  • Unblinding
  • Imbalanced randomization
  • Mis-dosing or mis-dispensing
  • Supply chain disruption

Calyx IRT allows you to focus on trial execution without worrying about impacting the validity of your trial or the safety of your patients.

HIGHLIGHTS
  • Central randomization list, generated by a dedicated team with experience over thousands of trials
  • Statistical designers with average 7+ years’ experience in IRT and 250+ adaptive trial designs delivered
  • Secure data blinding, resulting in safe navigation through Calyx IRT and safe communication with our helpdesk
  • Risk of unblinding reduced to 0.0001% per transaction
  • Medication management controls automatically restock sites and alert you of depot low stock, resulting in medication on site whenever patients need it
  • Expiry controls that remove the risk of medication expiring in the patient’s hands
  • Drug accountability, return, and destruction workflows allow you to track medication throughout its lifetime, and easily account for each single kit

Known for its ability to adapt to any clinical trial need, regardless of complexity, Calyx IRT is an advanced RTSM solution that takes the worry out of randomization and supply management so you can concentrate on study success.

Boost your productivity

With Calyx’s proven processes, you spend less time on IRT considerations and more time on trial execution.

From initiating the IRT design to database lock, Calyx’s expert project teams will recommend the best functionalities to meet your protocol requirements, selecting from our set of standards. Your time in vendor management will be reduced thanks to Calyx’s IRT expertise and broad experience managing unplanned situations. You will have access to tools that help you adapt to actual site recruitment.

HIGHLIGHTS
  • Existing set of standard functionalities to select and adapt to your own standards, to further reduce IRT setup time
  • As little as 4 weeks from requirements approval to UAT
  • Integrations with eClinical suites (EDC, ePRO, central labs, supply management, etc.); Calyx IRT successfully exchanges more than 10,000 files with other systems daily
  • User acceptance testing script writing and execution service simplifies IRT setup
  • IRT-dedicated helpdesk, specialized in managing the challenges of patient and inventory management for your sites and trial teams
  • Calyx supported 750+ live studies during the COVID pandemic, keeping all patients supplied with medication
  • IRT self-service tools allow you to quickly adapt to varying site recruitment levels, change/add supply strategies, and activate new countries and depots

Reduce your cost of IRT ownership with Calyx IRT.

Reduce drug management costs

Calyx IRT is more than just randomization and clinical supply management solution, it also enables you to reduce the cost of drug management. Calyx project teams are experts in optimizing clinical supply chains through IRT settings. For each protocol, they assess what is most prominent between the cost of shipping to sites and the cost of drug, and recommend how to apply IRT settings that will reduce the overall cost of drug management.

HIGHLIGHTS
  • Advanced IRT settings for site supply management, reducing drug wastage beyond the typical buffer stock and predictive drug shipment, such as:
  • Randomization code look-ahead
  • Automated recruitment-based supply adaptation
  • Fractional predictive shipments
  • Statistical designers with average 7+ years’ experience in IRT help you to best balance the cost of drug and cost of shipments
  • Supplies management adapting to central and local sourcing strategies
  • Self-service tools provided to clinical supplies management team to adapt mid-trial
  • Protocol review consultancy to adapt the protocol to reduce drug wastage
  • Ability to pool medication across studies, aligning with program-level medication management initiatives

Improve data quality

The quality of data collection can be achieved in several ways with Calyx IRT:

  • Reducing ambiguity during data capture through accurate questions and quality translations
  • Removing risk of errors through data entry validation in real time
  • Integrating with eClinical systems to reduce the need for data duplication

The latter also provides a reduction in data entry by site users and a reduction in need for data reconciliation at the end of the trial. At Calyx, we are extremely experienced in integrating with other eClinical systems, whether they are simple IRT-to- EDC integrations or more complex, blinded central lab integrations.

HIGHLIGHTS
  • More than 10,000 files successfully exchanged with other systems every day
  • Standard integrations with top EDC systems
  • Standard integrations with key supply distribution providers
  • Extensive experience in complex integrations, such as blinded lab data and electronic patient reported outcome (ePRO) scoring
  • Ability to build integrations with new systems at trial level
  • Existing processes for integration queries management through Calyx service desk

IRT integrations increase trial team and site efficiency and reduce the risk of unblinding

Stay Updated

Never miss a beat. Sign up to receive emails covering industry news and useful content to help you advance clinical development.

  • This field is for validation purposes and should be left unchanged.